The Internet Registry Information Service (IRIS) Protocol

January 12, 2005

Marcos Sanz, DeNIC
Andrew Newton, VeriSign
Leslie Daigle, VeriSign
Background

- The IETF’s CRISP Working Group
 - CRISP - Cross-Registry Internet Service Protocol
 - The CRISP Working Group was tasked with finding a solution to the problems that currently infest the Nicname/Whois protocol.
 - The CRISP Working Group created a list of functional requirements.
 - Proposals meeting these requirements were evaluated.
 - IRIS was selected as the protocol to publish as a standard.

- Now an IETF Proposed Standard
 - RFCs 3981, 3982, 3983
Flexible and Extensible

- Registry types within CRISP
 - Domain Registries (thin and thick).
 - Domain Registrars.
 - Number Resource Registries (RIRs).
 - Before CRISP, domain and IP address WHOIS were on divergent paths.

- Outside of CRISP
 - EREG - IRIS for ENUM (work-item of ENUM working group).
 - ECRIT - Emergency Context Resolution for Internet Technology (emergency calls and messaging).
 - NGN (ITU, ETSI, ATIS)
Value

- Decentralized by design.
 - Registrars can keep their data to themselves.

- Navigation.
 - Uses DNS hierarchies where possible.
 - Distinguishes between entity references and search continuations.
 - Entity references are akin to URLs
 - Search continuations are – “restart the search at this different site”

- Multiple authentication mechanisms.
 - Enables better policies surrounding the exposure of whois data.

- Internationalization and IDN Support.
Cost

- Open Standard
 - There is no IPR attached to IRIS.
 - No specific implementation necessary.

- Implementation
 - Uses common techniques and components.
 - XML, NAPTR & SRV RRs
 - Open source client and server implementations available.

- Database
 - IRIS is intended to sit atop current registration databases.
 - It does not change a registry’s or registrar’s database.
 - Because that can be really expensive.
 - IRIS imposes no matrices or tree structures requiring new back-end data models.
CRISP Status

- All of CRISP’s original milestones have now been met:
 - Requirements (RFC 3707)
 - Core Protocol and Domain Registry (RFCs 3981, 3982, and 3983)
- Address Registry
 - To be last called in CRISP soon.
- IRIS over UDP, DCHK
 - To be last called in CRISP soon.
Other Work Items

- WHOIS (port 43) cohabitation
 - Dovetails nicely with work already done by DeNIC on SRV records and Whois
 - No changes to existing whois servers.
 - Enables clients to integrate the two services.
Known Deployments

- **Current**
 - .com/.net (see iris.verisignlabs.com)
 - UDP planned for 2005
- **In 2005**
 - .de
 - .uk
 - RIPE NCC
- .de, .uk, .com, .net represent over 60% of all registered domains.
Navigation of Servers and Data

- Finding the best server to query first using SRV and NAPTR records within DNS.
 - Use of DNS means there is no need for a “well-known” server.

- Query Distribution with entity references and search continuations.
 - Registries may point to registrars.
 - Registrars may point to registrants.

- New navigation methods may be added.
Tiered Access

- Ability to control who gets the information.
 - Policy determines who sees what.
- Coordination can be in-band, out-of-band, or both.
- Adds many more policy options than are available with port 43.

```
$iris kosters.net
  Kosters, Mark
  US

$iris -cert fbi.cert kosters.net
  Kosters, Mark
  13121 Fox Shadow Lane
  Clifton, VA 20124  US
  703-948-3362
```
Authentication Distribution

- One of the challenges with tiered access is giving the right users access to the right information without overburdening the servers with the constant need to sync user lists.

- Digital certificates can off-load this burden.
 - Chains of trust.
 - A sender doesn’t know the specific user, but does trust the entity that issued the certificate to the user.
 - User-based attributes.
 - A sender doesn’t know the specific user, but trusts that a user of a certain type based on data in the certificate.

- “Relay Bags” also allow off-loading for authorization schemes to a policy server.
Policy Neutral

- IRIS is policy neutral.
 - Access can be anonymous and/or authenticated.
 - Data can be given to some users and/or not others.
 - Trust can be based locally, regionally, globally, or all of the above.
 - Information can be centralized, distributed, or centrally indexed but distributed or all of the above.

- Since policy is not in the protocol, it can be differ between servers or sets of servers.

- Policy makers now have more tools.
Well Structured

- Well-known queries.
 - Better server performance on database indices.
 - Better client interface.

- Structured and Normalized Data
 - Enables L10N or I18N protocol elements.
 - Richer client presentation.
 - Location of entities are clearly identified.
 - Relation to the query is clearly noted.

- When combined with authentication, enables detailed audit trails.
Structure & Internationalization

- The content of the data is under the control of the server.
- The presentation of the data is under the control of the client.
Localization

- For Internationalization:
 - datatypes are given well known tags for localization by the clients
 - data with multiple locales are given language tags
Extensibility Through Layering

- IRIS is a layered protocol
 - Clear lines of responsibility in each layer.
 - Makes re-use of components simple.
- Common Building Components
 - XML, NAPTR & SRV records, SASL
Conclusion

- IRIS Core & DREG are standardized.
 - Work is proceeding in other areas.
- Benefits
 - Decentralization with Navigation
 - Better policy support via multiple authentication
 - Structure and Internationalization
 - Extensible
- Low Cost
 - Bolts atop existing databases.
 - Authorization management.
 - Open source implementations available.
Follow-Up

● If you have additional questions or concerns to be addressed, please feel free to contact us:
 ● Marcos Sanz sanz@denic.de
 ● Andrew Newton andy@hxr.us
 ● Leslie Daigle leslie@thinkingcat.com

● Or ask the CRISP working group:
 ● crisp@ietf.org