
DNSCurve:

Usable security for DNS

D. J. Bernstein

Research Professor

Center for RITES: Research and

Instruction in Technologies

for Electronic Security

Department of Computer Science

University of Illinois at Chicago



The Domain Name System

cert.org has mail

to deliver to someone@uic.edu.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Administrator at uic.edu

“The mail server for

uic.edu

has IP address

128.248.155.49.”

OO

Now cert.org

delivers mail to

IP address 128.248.155.49.



Same for web browsing.

dhs.gov wants to see

http://www.uic.edu.

'& %$ ! "#Browser at dhs.gov

'& %$ ! "#Administrator at uic.edu

“The web server

www.uic.edu

has IP address

128.248.155.210.”

OO

Now dhs.gov

retrieves web page from

IP address 128.248.155.210.



DNS software security holes:

BIND libresolv buffer overflow,

Microsoft cache promiscuity,

BIND 8 TSIG buffer overflow,

BIND 9 dig promiscuity, etc.

Fix: Use better DNS software.

http://cr.yp.to/djbdns.html

carries a $1000 reward for

first verifiable public report

of a software security hole.

But what about protocol holes?



Forging DNS packets

cert.org has mail

to deliver to someone@uic.edu.

'& %$ ! "#Mail client at cert.org

'& %$ ! "#Attacker anywhere on network

“The mail server for

uic.edu

has IP address

157.22.245.20.”

OO

Now cert.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.



“Can attackers do that?”



“Can attackers do that?”

— Yes.



“Can attackers do that?”

— Yes.

“Really?”



“Can attackers do that?”

— Yes.

“Really?” — Yes.



“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”



“Can attackers do that?”

— Yes.

“Really?” — Yes.

“Don’t the clients check

who’s sending information?”

— Yes, but the attacker

forges the sender address;

as easy as forging address

on a physically mailed letter.



“Is the client always

listening for the address of

www.uic.edu?”



“Is the client always

listening for the address of

www.uic.edu?”

— No, but many ways for

attackers to work around this:

1. Attack repeatedly.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

4. Easy, succeeds instantly:

: : :



“Is the client always

listening for the address of

www.uic.edu?”

— No, but many ways for

attackers to work around this:

1. Attack repeatedly.

2. Poke the client

to trigger a known lookup.

3. Attack caches

a long time in advance.

4. Easy, succeeds instantly:

Sniff the network.



“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

uic.edu?”



“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

uic.edu?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

4. Easy, succeeds instantly:

: : :



“Doesn’t the attacker have to

win a race against the

legitimate DNS packets

from the administrator at

uic.edu?”

— Yes, but many ways for

attackers to win race:

1. Deafen the legitimate server.

2. Mute the legitimate server.

3. Poke-jab-jab-jab-jab-jab.

4. Easy, succeeds instantly:

Sniff the network.



What about cookies?

Client’s DNS query packet

contains a 16-bit ID.

RFC 1035 (1987): “This identifier

is copied [to the] reply and can be

used by the requester to match up

replies to outstanding queries.”

Traditional ID sequence:

1, 2, 3, 4, 5, etc.

More recent idea:

“Hey, let’s use random IDs! Then

the attacker won’t be able to

forge a packet with the right ID!”



Many “random” IDs

are actually quite easy to predict.

Client asks for information

from attacker’s servers;

attacker inspects IDs,

predicts subsequent IDs.

See, e.g., emergency BIND 9

upgrade (2007.07.24) responding

to attack by Amit Klein.

But modern cryptographic

random-number generators

are extremely difficult to predict.



Client can randomize

16-bit ID and

16-bit UDP source port.

Implemented and advertised

in djbdns since 1999,

and in PowerDNS since 2006.

Same feature added 2008.07

in emergency upgrade to BIND,

Microsoft DNS, Nominum CNS,

most Cisco products, etc.



Many ways for attackers

to beat this randomization,

even if it’s cryptographic:

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

: : :



Many ways for attackers

to beat this randomization,

even if it’s cryptographic:

1. Attack repeatedly.

“An attacker who makes a few

billion random guesses is likely

to succeed at least once; tens of

millions of guesses are adequate

with a colliding attack;” etc.

2. Allocate most UDP ports

to other tasks, non-reusably.

3. Easy, succeeds instantly:

Sniff the network.



What about thorough crypto?

Cryptography can

stop sniffing attackers

by scrambling legitimate packets.

Cryptography is often described

as protecting confidentiality:

attackers can’t understand

the scrambled packets.

Can also protect integrity:

attackers can’t figure out

a properly scrambled forgery.



Traditional cryptography requires

each legitimate client-server pair

to share a secret key.

Public-key cryptography

has much lower requirements.

(1976 Diffie–Hellman;

many subsequent refinements)

Each party has one public key.

Two parties can communicate

securely if each party knows

the other party’s public key.

1993: IETF begins “DNSSEC”

project to add public-key

signatures to DNS.



Paul Vixie, June 1995:
This sounds simple but it has
deep reaching consequences
in both the protocol and the
implementation—which is why it’s
taken more than a year to choose
a security model and design a
solution. We expect it to be
another year before DNSSEC is
in wide use on the leading edge,
and at least a year after that
before its use is commonplace on
the Internet.

BIND 8.2 blurb, March 1999:
[Top feature:] Preliminary
DNSSEC.

BIND 9 blurb, September 2000:

[Top feature:] DNSSEC.



Paul Vixie, November 2002:
We are still doing basic research
on what kind of data model will
work for DNS security. After
three or four times of saying
“NOW we’ve got it, THIS
TIME for sure” there’s finally
some humility in the picture
: : : “Wonder if THIS’ll work?”
: : :
It’s impossible to know how many
more flag days we’ll have before
it’s safe to burn ROMs : : : It
sure isn’t plain old SIG+KEY,
and it sure isn’t DS as currently
specified. When will it be? We
don’t know. : : :
2535 is already dead and buried.
There is no installed base. We’re
starting from scratch.



Paul Vixie, 20 April 2004,

announcing BIND 9.3 beta:

BIND 9.3 will ship with DNSSEC



Paul Vixie, 20 April 2004,

announcing BIND 9.3 beta:

BIND 9.3 will ship with DNSSEC
support turned off by default in
the configuration file.



Paul Vixie, 20 April 2004,

announcing BIND 9.3 beta:

BIND 9.3 will ship with DNSSEC
support turned off by default in
the configuration file. : : :
ISC will also begin offering
direct support to users of BIND
through the sale of annual support
contracts.



Paul Vixie, 1 November 2005:
Had we done a requirements doc
ten years ago : : : they might
not have noticed that it would
intersect their national privacy
laws or business requirements,
we might still have run into the
NSEC3 juggernaut and be just
as far off the rails now as we
actually are now.



After fifteen years and millions of

dollars of government grants

(e.g., DISA to BIND company;

NSF to UCLA; DHS to Secure64

Software Corporation),

how successful is DNSSEC?

The Internet has about

70000000 *.com names.



After fifteen years and millions of

dollars of government grants

(e.g., DISA to BIND company;

NSF to UCLA; DHS to Secure64

Software Corporation),

how successful is DNSSEC?

The Internet has about

70000000 *.com names.

Surveys by DNSSEC developers,

last updated 2008.08.20,

have found 116 *.com

names with DNSSEC signatures.



DNS in more detail

Browser at dhs.gov

DNS cache

WV UT
PQ RS

OO

.uic.edu
DNS server

OO

.uic.edu
database

OO

Administrator at uic.edu

WV UT

PQ RS

OO

“The web server

www.uic.edu

has IP address

128.248.155.210.”

_g



DNS cache learns location of

.uic.edu DNS server from

.edu DNS server:

at dhs.gov DNS cache
'& %$
 ! "#

.edu
DNS server

OO

.edu
database

WV UT

PQ RS

OO

at uic.edu Administrator
'& %$
 ! "#

OO

“The DNS server

for .uic.edu

is icestation

with IP address

128.174.45.64.”

5=



Packets to/from DNS cache

God sayeth unto the DNS cache:
“DNS Root K.Heaven 193.0.14.129”

193.0.14.129
“DNS .edu a3 192.5.6.32”

// DNS cache
“Web www.uic.edu?”oo

192.5.6.32
“DNS .uic.edu icestation 128.174.45.64”

// DNS cache
“Web www.uic.edu?”oo

128.174.45.64
“Web www.uic.edu 128.248.155.210”

// DNS cache
“Web www.uic.edu?”oo



GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT

PQ RS

OO

.edu
DNS
server

::
uuuuuuuuuuu .uic.edu

DNS
server

OO

.edu
data

at Internet
Central HQ

base

OO

.uic.edu
database

OO

at uic.edu

Administrator

WV UT

PQ RS

OOhhPPPPPPPP

\d

6>



The impact of DNSSEC

DNSSEC changes everything.

Administrator doesn’t just

put data into database.

Must sign each update.

Sign again every month or

uic.edu drops off Internet;

“DNSSEC suicide.”

Administrator has to change

the uic.edu server

and the database software

(maybe a homegrown Perl script?)

to support signed records.



Administrator has to send

public key to edu.

The .edu server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

Big zones such as .com

refuse to sign complete database.

Full DNSSEC signing would be

much too slow and much too big.



DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Often many more packets

than original DNS.

Higher latency for user.

More frequent failures.

Also, much easier for

attacker to deny service.

Official DNSSEC response,

RFC 4033: “DNSSEC

provides no protection

against denial of service attacks.”



Most DNS administrators

have disabled “zone transfers.”

DNSSEC subverts this.

DNSSEC publishes all DNS data.

“NSEC3” DNSSEC variant

tries to limit exposure

but is almost always

very easy to break.

Attacker can extract

> 99% of all DNS data.

Official DNSSEC response:

“DNSSEC is not designed

to provide confidentiality.”



Standard DNSSEC signatures:

1024-bit RSA (with SHA-1).

Popular but shortsighted.

Breakable today by botnets

and by large companies.

Allegedly chosen for

fastest possible verification.

DNSSEC software uses

a few million CPU cycles

to verify a DNS record.

Larger RSA key sizes

create even worse problems

for DNSSEC time and bandwidth.



DNSCurve

DNSCurve is a new project

to add heavy-duty integrity

(RSA-1024 has 80-bit security;

DNSCurve has 128-bit security)

and some confidentiality

and availability

to the Domain Name System.

Despite all this security,

DNSCurve is very easy for

software authors to implement

and very easy for

administrators to deploy.



Administrator has to change

the uic.edu server

to support DNSCurve,

or install a DNSCurve forwarder

alongside the server.

Administrator does not need to

change database software,

does not need to store signatures,

does not need new procedures

for updating DNS records, and

does not risk DNSSEC suicide.



Administrator changes

server name such as icestation

to a server name that encodes

the DNSCurve public key.

The .edu server

and database software

and web interface

already support

uic.edu server names selected

by the uic.edu administrator!



Cache has to be upgraded

to support DNSCurve.

Cache naturally sees the

encoded DNSCurve public key.

Cache encrypts and authenticates

DNS packets sent to that server.

Cache verifies and decrypts DNS

packets received from that server.

No extra packets.

Forged packets are

very efficiently discarded.

Denial of service becomes

much more difficult.



DNSCurve makes critical use

of state-of-the-art

elliptic-curve cryptography.

Cache has private integer 
,
32-byte public key Curve25519(
).
Server has private integer s,
32-byte public key Curve25519(s).
Cache and server compute

shared secret Curve25519(s
),
use that secret to quickly

encrypt and authenticate packets.



Whenever cache sees a

new public key Curve25519(s)
it computes Curve25519(s
).
Core 2 Quad Q6600 can do this

25000 times per second

using latest Curve25519 software.

Per-packet costs: much smaller;

pure secret-key cryptography.

Similar speed for server.

Many new clients per second;

many more packets per second.



Plans

All necessary cryptographic tools

are in new “Networking and

Cryptography library” (NaCl)

co-developed with

EU FP7 CACE project.

Top two tasks:

1. DNSCurve forwarder suitable

for use with any DNS server.

2. DNSCurve cache, built

with minimal modifications to

dnscache from djbdns.


