

Introduction

- Development of the model by TNO as part of the Root Scalability Study Team
- Why quantify?

Scalability is a quantitative topic

What's the challenge?

"The challenge is to reap sound insight and understanding from simulations, while never mistaking for the simulation real world."

[FloydPaxson01, Simulating The Internet]

Goal of the quantitative model

- Root Scaling Study Terms of Reference
 - Primary deliverable: model of the root server system
 - showing how different parts of the system are related
 - impact of changing (combinations of) parameter values on all parts of the system
 - the model should be as quantitative as possible
 - use of the model: clarify consequences of policy decisions about the root
 - it should not try to answer: "how much is too many?"
 - Impact of growth scenarios ("Plus 1", "Plus 2" and "Plus 4")
- The quantitative model investigates the scalability:
 - The parameters that dominantly influence the scalability are not a priori known => model will help to indentify them
 - 2. Once the scalability is understood, the model will be applied to quantify the scalability boundaries

Developing the quantitative model (1/2)

- The quantitative model is based on
 - Narratives from the Root Scaling Study Team
 - Terms of reference of ICANN
- Observed information deficiencies:
 - Some information regarding processes was not available, conflicting, or subject to change in very near future
 - Failure rates in provisioning and publication process are unknown
 - Measurement data of zone file distribution is fragmented
- Scalability questions to be answered require diverging model output metrics
 - Resource load, lead times, several types of error probabilities, and more?
 - Consequence w.r.t. model analysis techniques => use one analytical model per 1 or 2 metrics, or a single simulation based model

Developing the quantitative model

(2/2)

- Consequently, the modelling approach was chosen such that:
- Model is easily adjustable during its development
 - Hierarchical modeling
 - Separation between workflow and resources layers
 - Use block/object oriented, event-driven simulation SW package (ExtendSim)
- Modeled processes are recognizable (enable review/feedback)
 - Simulation of workflow with graphical interface and animation
- Input parameter policy:
 - Include enough parameters to enable investigation of relevant questions,
 - While keeping the total number of input parameters as low as possible
- Model based sensitivity analysis allows to:
 - Refine the model itself and
 - Estimating the scalability ranges and numerical confidence intervals

Chosen scope of the scalability model

 Quantitative analysis of the scalability of the root-zone file provisioning and publication process

Qualitative reasoning and rough estimating within RSST pinpointed these processes as most likely bottlenecks

Overview level: workflow layer

- The root scaling model consists of the following parts:
 - Provisioning process of TLD change requests
 - receiving change requests by IANA
 - IANA NTIA/DoC VeriSign validation checks
 - Root-zone file publication
 - production of the zone file
 - distribution to the RSO's
- The events in the event-driven simulation model are ...
 - provisioning side: TLD change requests, distinguished per type (variable rate)
 publication side: root zone files (twice a day, variable size)
 - publication side: root zone files (twice a day, variable size)

ExtendSim model screenshot: top-level view

processes at VeriSign

ExtendSim model screenshots **Publication process**

Root-zone file publication process

- Two examples (out of four) RSO assemblies and the modelling
 - In the model we confine to the successful retrieval to a single name server

RSO assembly

Model

RSO with staged cluster with check from VeriSign

RSO with non-staged cluster

Model input and outputs Input Output

- Provisioning
 - # TLDs
 - TLD change request rate
 - Fraction of "Administrative info" changes
 - Processing times at IANA, NTIA, VeriSign
 - Available FTE capacity
 - # Authorization checks per change request
 - Office hours for manual actions
- Error model in provisioning process
 - Incremental error rate per manual action
- Publication
 - Normalized root zone file size
 - File size multiplier (e.g., #TLD, DNSSEC)
 - Round-Trip Time (for DNS notify)
 - Packet-loss probability (for DNS notify)
 - DNS / SOA Number of attempts
 - DNS / SOA time-out value
 - XFR Connection goodput (Mbit/s)
 - XFR success probability

Provisioning

- · Lead time of provisioning side
- · Load on each of the manual resources

- Error rates in provisioning process
 - Cumulative error rate in provisioning process
- Publication
 - Zone file loading time in publication process

Model inputs

Model output

- Output parameters focused on:
 - load of the resources
 - provisioning process and publication lead times
 - error propagation probabilities
- Benefit of chosen simulation approach: adaption of model output metrics is very easy
- Choice to implement model in ExtendSim provides graphical interface and animation 'as a bonus'
 - this enhances insight in the modeled processes

Example of results of the simulation model

Scenario	# TLD's	File size		Connection quality
1	280	0.1 MB	3 MB	Good
2	1120	0.4 MB	12 MB	Good
3	4480	1.6 MB	48 MB	Good
4	8960	3.2 MB	96 MB	Good

Conclusions

- Simulation model is developed and applied for scalability analysis
 - model specifies the current understanding of the TLD change provisioning and zone file publication process => "base-line model"
 - improving quality of model input data remains a challenge ("rubish-in = rubish-out")
- Preliminary results from simulated cases support the conclusion in the Scaling the Root report
 - current processes can cope with addition of hunderds of TLDs
 - when adding thousands of TLDs resource capacity upgrades will become necessary

Recommended next steps

- A. Start collecting monitoring data for the root system in order to get (a) reliable quantitative data and (b) experience with their trend patterns
 - The model input and output parameters are a starting point for the metrics to monitor; further investigation needed to find the most appropriate set
- B1. Validate and fine-tune the model
 - Using the collected quantitative data and the more specific intended use of the model
- B2. Cover the risk of quantitative numbers: Do not pretend to be more predictive / accurate, than the quantitative facts allow you to be! => analyze sensitivity of the model input parameters to estimate the numerical confidence intervals
- C. **Detail the quantitative root-scaling analysis** to obtain more accurate boundaries for the scalability
 - Start simple, start with first-order-statistic: load on resources

