

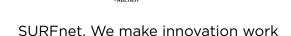
DNSSEC research at SURFnet

ICANN 41, Singapore

Roland van Rijswijk roland.vanrijswijk [at] surfnet.nl

About SURFnet

Winschoten 🖣


National Research and Educational Network

11000+ km ultra-high bandwidth fibre-optic network

'Shared ICT innovation centre'

≥ 160 connected institutions

±1 million end users

SURF

Measuring validation

- We have a pretty good insight in DNSSEC deployment on the signing side
- Little data is available about the uptake of validation
- A Security Week article triggered us to delve into this
 - http://bit.ly/sw-dnssec-enterprise
 quote: "There are few if any rewards for an enterprise to actually run DNSSEC live on the Internet today, especially since most ISPs aren't validating yet"

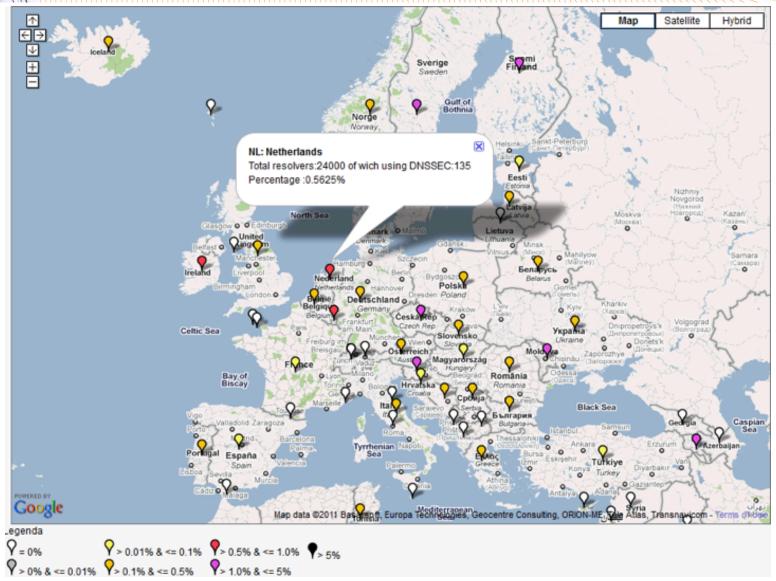
A starting point

- JPRS presented on "How to count validators" at the DNS-OARC workshop in March 2011 (http://bit.ly/jprs-validators)
- They performed analyses on packet captures
- We had already started a similar effort but instead of analysing offline data we focus on live data

SURF

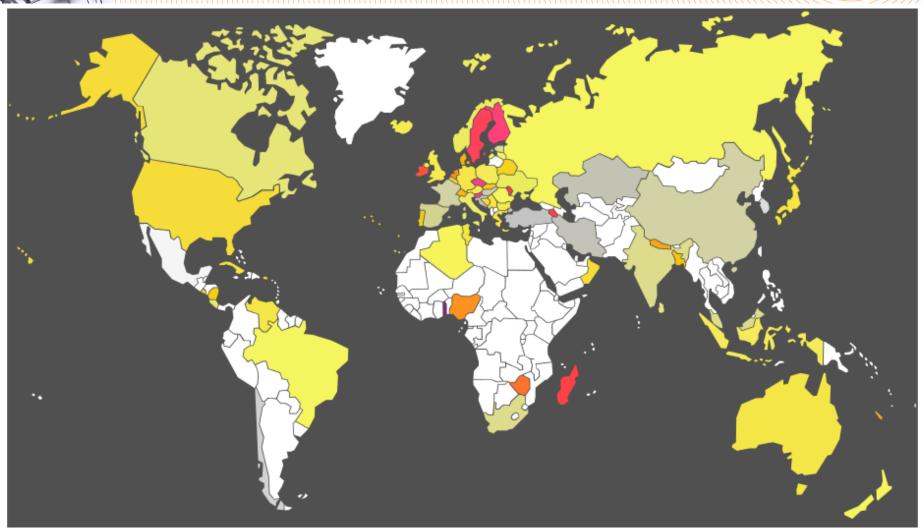
Strategy

- Assumption:

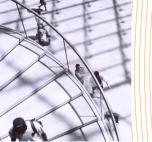

Only validating resolvers will send queries for **DS** and **DNSKEY** records

- We implemented simple tooling based on libpcap to capture and parse DNS packets
- We filter out queries for our signed domains (surfnet.nl & gigaport.nl)
- Aggregate queries and send them off to a database server

Early results



Early results



Early results

NC	New Caled	donia	446	2	0.4484%	99.5516%	
NE	Niger		44	0	0%	100%	
NG	Nigeria		545	3	0.5505%	99.4495%	
NI	Nicaragua		297	1	0.3367%	99.6633%	
NL	Netherland	is n	240	00 135	0.5625%	99.4375%	
NO	Norway	<u>(</u>	312	9 5	0.1598%	99.8402%	
NP	Nepal		210	1	0.4762%	99.5238%	
NR	Nauru		4	0	0%	100%	
NU	Niue		3	0	0%	100%	
NZ	New Zeala	nd	299	4 5	0.167%	99.833%	

192.87.36.36	SURFnet by	53311	1320	0	2011-06-10 17:09:32.914083	2011-05-30 18:02:57.866841
192.87.106.99	SURFnet by	4197	1034	0	2011-06-10 17:06:15.573689	2011-05-30 18:10:41.945889
195.169.124.124	SURFnet by	34037	1282	0	2011-06-10 17:09:20.182531	2011-05-30 18:03:49.117727
194.171.9.20	SURFnet by	106	14	0	2011-06-10 15:31:10.787898	2011-05-31 09:20:46.611621
192.87.106.106	SURFnet by	80516	1455	0	2011-06-10 17:09:46.970471	2011-05-30 18:02:54.089563
131.155.140.130	Technische Universiteit Eindhoven	389	67	0	2011-06-10 17:07:26.989673	2011-05-30 19:23:46.910177
84.241.226.7	T-mobile Netherlands bv.	2988	259	0	2011-06-10 16:40:33.647419	2011-05-30 18:13:08.180237
84.241.226.137	T-mobile Netherlands bv.	3302	263	0	2011-06-10 16:53:39.508226	2011-05-30 18:44:06.486269

SURF

Plans

- We plan to make this information available to interested parties (no public site planned for the moment)
- We are talking to SIDN to see if we can run similar experiments on the .nl infrastructure
- We will release the tools in open source under a BSD licence
- Please contact me if you are interested or wish to contribute

UDP fragmentation issues

- Late last year we experienced problems with a large ISP in The Netherlands
- surfnet.nl had just gotten a DS in .nl
- Colleagues started complaining that they could not log on to their mail from home
- It turned out to be a firewall at the ISP that discarded UDP fragments
- Even though they did not do validation, they could not resolve our records (!)

- We talked to their engineers
- They could not replace the firewall
- In the end, they lowered the EDNSO buffer size on their resolver to 512 bytes
- Problem solved, right?

The saga continues

- Everything worked well until in March 2011 we suddenly started getting complaints from some companies trying to e-mail us
- Lo and behold, they were customers of this same ISP

The firewall strikes back

- It turned out that only customers using the hosted MS Exchange service had issues
- After talking to engineers at the ISP we discovered the problem
- They had upgraded the dedicated resolvers in their hosted exchange environment to Windows 2008R2 which does EDNSO and sets DO=1
- Solution: tweak some arcane registry setting

Co-discovery

- While investigating this issue we discovered something interesting: the resolvers behind the firewall received the first fragment of the UDP packet
- The protocol stack detects that fragments are missing and sends back an ICMP message which we can detect:

```
11:01:59.849643 IP *.*.*.* > ns3.surfnet.nl: ICMP ip reassembly time exceeded, length 92
11:01:59.849655 IP *.*.*.* > ns3.surfnet.nl: ICMP ip reassembly time exceeded, length 92
```


Research

- We are extending our monitoring tools to detect this issue and log it in our database
- Some initial packet dumping showed scary results
- People even seem to think that UDP fragments are an attack (we have had abuse complaints sent to our CERT team!)
- We have a student who is creating a lab setup to test our theory and write a paper on the results

Conclusion

- This issue requires some serious attention
- It affects owners of signed domains and they can do very little about it
- I have some ideas about making authoritative servers somehow detect this and react to it (but some people are not going to like these ideas)
- If you operate a signed zone you may wish to look into this...

That's all folks! Questions?

If you have any questions about this presentation, please feel free to contact me by e-mail

Roland van Rijswijk

roland.vanrijswijk [at] surfnet.nl

Presentation released under the Creative Commons "Attribution" license: (http://creativecommons.org/licenses/by/3.0/)

