Vulnerability Detection in Core
Internet Systems

ICANN, San Francisco, March 2011

Dr. Andrzej Bartosiewicz, CEO Patrycja Wegrzynowicz, CTO
andrzej@yonita.com patrycja@yonita.com
phone: +1 650 2493707 phone: +1 650 2493708

:7"/ YONITA
"

mailto:patrycja@yonita.com
mailto:patrycja@yonita.com
mailto:patrycja@yonita.com
mailto:andrzej@yonita.com
mailto:andrzej@yonita.com
mailto:andrzej@yonita.com

Internet Infrastructure

* Routers, Switches, Firewalls etc
* DNS servers

e Registry Infrastructure
— Registration systems, WHOIS, exports to DNS, monitoring
— Payments, Accounting, CRM etc.

* Registrars / Resellers Infrastructure
— Registration systemes,
— Payments...

* Hosting and SaaS services
* etc.

:7"/ YONITA
"

DNS (safety) Facts

* DNS is very well protected

— Resolvers well tested by many parties all over the
years

— Anycast solutions implemented
— Extensive monitoring solutions implemented

 Due to extensive work on DNS infrastructure,
it’s (very) difficult to exploit it today.

:7"/ YONITA
-

How to attack the core internet
infrastructure?

* Attack DNS itself? No way, but...
* By exploiting Registries” B2B systems
— Directly on registration systems
— Through payment or customer care systems
— Social engineering
* By exploiting Registras’ B2C systems
— Registrars (often) do not invest enough
— B2B systems are easier to protect than B2C

:7"/ YONITA
-

Registry and Registrar Systems

It’s all about

software!

ij YONITA

Application Weaknesses

* Bugs
— Correctness (internal incorrect execution)
— Security vulnerabilities (external attacks)

* Bad practices

— Performance bottlenecks (certain characteristics reveal useful
information to attackers and/or allow for certain attacks)

— Low maintanability (in long term leads to more bugs)

* Backdoors
— 3" party (e.g., illegal access/data gathering)

:7"/ YONITA
"

Weaknesses — Sources

* Lack of knowledge

— Developers not aware about security (and other) issues
— High rotation of developers

— Many freshmen developers

— Changing technologies

 Complexity of software development
— Changing requirements
— Size of a codebase
— Growing technology stack

e Malice or laziness

:7"/ YONITA
"

Traditional Best Practices

e Education

— Advanced training — dedicated, expert training courses,
coaching sessions, workshops.

* Software development process

— More and more tests: Test-Driven Development (TDD), unit
tests, integration tests, performance tests.

— Continuous integration (and automated execution of tests).

* |Independent verification
— Audits: blackbox testing, code audits

:7"/ YONITA
"

Is This Enough?

Problems

(1) Size does matter! (complexity of software development)

(2) Program testing can be used to show the presence of bugs,
but never to show their absence!

-- E. Dijkstra

Solution
Think? Why think! We have computer to do that.

-- J. Rostand
:7"/ YONITA
.,/

Automated Tools

e Automated testers
— Generate test data and test suites
— Scan applications e.g., web applications

* Tools to analyze sources, binaries without
execution

— Static analysis

* Tools to analyze execution of a program
— Dynamic analysis

:7"/ YONITA
-

_

Semantic
Code Scanner

?j YONITA

(Static
wfication)

Yonita Solution

—

Smart Web
Scanner

(Dynamic
Qification)

Architect-
ural bad
practices

> Security
vulnerabi-

lity

Perfom)
anti-

patterns

Database
misuses

Concurr-
ency
issues

Smart Web Scanner

* Generates test suites
‘session management | — Automatically discovers

| the structure of web
Input and output validation applications
N -‘ — Analysis of HTML/JS

e Injections (e.g., script injection, OS command

Authentication, authorization, and

injection, SQL injection, CRLF injection) — Heuristics based on
* Cross Site Scripting dictionaries, thesauruses,
e Cross Site Request Forgery ontologies
e Forward and Redirect mechanisms .
« Content spoofing — Preconfigured forms
* Buffer overflow Generates test data

e Direct object references

e ————————————————— — To cover various
(D)DoS attacks vulnerabilities
\

fj YONITA

Semantic Code Scanner

-)
‘e @ 9
) emantic
Code Infergnce |
@8 ° Analyzer \Englne
59
e Sourcecode * Structure e Deductive database
e Bvtecode * Call flow e Stores metamodel
Y * Data flow e Infers about defects

i/ YONITA

Summary

While securing Internet

infrastructure, don’t forget
about software!

ij YONITA

