
Vulnerability Detection in Core
Internet Systems

ICANN, San Francisco, March 2011

Patrycja Wegrzynowicz, CTO

patrycja@yonita.com

phone: +1 650 2493708

Dr. Andrzej Bartosiewicz, CEO

andrzej@yonita.com

phone: +1 650 2493707

mailto:patrycja@yonita.com
mailto:patrycja@yonita.com
mailto:patrycja@yonita.com
mailto:andrzej@yonita.com
mailto:andrzej@yonita.com
mailto:andrzej@yonita.com

Internet Infrastructure

• Routers, Switches, Firewalls etc

• DNS servers

• Registry Infrastructure
– Registration systems, WHOIS, exports to DNS, monitoring

– Payments, Accounting, CRM etc.

• Registrars / Resellers Infrastructure
– Registration systems,

– Payments…

• Hosting and SaaS services

• etc.

DNS (safety) Facts

• DNS is very well protected

– Resolvers well tested by many parties all over the
years

– Anycast solutions implemented

– Extensive monitoring solutions implemented

• Due to extensive work on DNS infrastructure,
it’s (very) difficult to exploit it today.

How to attack the core internet
infrastructure?

• Attack DNS itself? No way, but…

• By exploiting Registries’ B2B systems

– Directly on registration systems

– Through payment or customer care systems

– Social engineering

• By exploiting Registras’ B2C systems

– Registrars (often) do not invest enough

– B2B systems are easier to protect than B2C

Registry and Registrar Systems

It’s all about
software!

Application Weaknesses

• Bugs
– Correctness (internal incorrect execution)

– Security vulnerabilities (external attacks)

• Bad practices
– Performance bottlenecks (certain characteristics reveal useful

information to attackers and/or allow for certain attacks)

– Low maintanability (in long term leads to more bugs)

• Backdoors
– 3rd party (e.g., illegal access/data gathering)

Weaknesses – Sources

• Lack of knowledge
– Developers not aware about security (and other) issues

– High rotation of developers

– Many freshmen developers

– Changing technologies

• Complexity of software development
– Changing requirements

– Size of a codebase

– Growing technology stack

• Malice or laziness

Traditional Best Practices

• Education
– Advanced training – dedicated, expert training courses,

coaching sessions, workshops.

• Software development process
– More and more tests: Test-Driven Development (TDD), unit

tests, integration tests, performance tests.

– Continuous integration (and automated execution of tests).

• Independent verification
– Audits: blackbox testing, code audits

Is This Enough?

Problems

(1) Size does matter! (complexity of software development)

(2) Program testing can be used to show the presence of bugs,

but never to show their absence!

 -- E. Dijkstra

Solution

Think? Why think! We have computer to do that.

-- J. Rostand

Automated Tools

• Automated testers

– Generate test data and test suites

– Scan applications e.g., web applications

• Tools to analyze sources, binaries without
execution

– Static analysis

• Tools to analyze execution of a program

– Dynamic analysis

Yonita Solution

Perform.
anti-

patterns

Database
misuses

Concurr-
ency

issues

Security
vulnerabi-

lity

Architect-
ural bad
practices

Standard
defects

Semantic
Code Scanner

(Static
Verification)

Smart Web
Scanner

(Dynamic
Verification)

Smart Web Scanner

Authentication, authorization, and
session management

Input and output validation

•Injections (e.g., script injection, OS command
injection, SQL injection, CRLF injection)

•Cross Site Scripting

•Cross Site Request Forgery

•Forward and Redirect mechanisms

•Content spoofing

•Buffer overflow

•Direct object references

(D)DoS attacks

• Generates test suites
– Automatically discovers

the structure of web
applications

– Analysis of HTML/JS

– Heuristics based on
dictionaries, thesauruses,
ontologies

– Preconfigured forms

• Generates test data
– To cover various

vulnerabilities

Semantic Code Scanner

Code

• Sourcecode

• Bytecode

Semantic

Analyzer

• Structure

• Call flow

• Data flow

Inference
Engine

• Deductive database

• Stores metamodel

• Infers about defects

Summary

While securing Internet
infrastructure, don’t forget

about software!

