

DNS(SEC) client analysis

Bart Gijsen (TNO)

DNS-OARC, San Francisco, March 2011

'Overview' DNS traffic analysis

➤ Focus of DNS analysis has been on resolver and authoritative ⇔ bulk data analysis

Key question:

How will DNSSEC change the behavior of DNS client querying?

More specific ...

> How do DNS stub resolvers react to response types such as ServFail, responses > 512 Bytes, ...?

4 11-3-2011

Experimental set-up

- Configure OS / browser on client machine
 - OS: Windows XP, Windows 7, Ubuntu Linux, Mac OSX
 - Browsers: IE, Firefox, Chrome, Safari
 - not all combi's, but quite some ...
 - clean OS image
 - all settings left on defaults

Test execution

- Execute test run
 - query each URLs with predefined response (Idns tool)
 - Valid, Valid (>512 Bytes), NXdomain, Partial, ServFail, No reply, Truncated, Recursion refused
 - query via ping (=> OS only) and via browser(=> browser & OS)
 - repeat query once to check impact of caching
- Observe the number of repeated queries and delays

Example of DNS client behaviour: Linux-Ubuntu /w Firefox

```
.5:26:38.694678 IP 10.0.3.2.56600 > 10.0.2.1.53: 7000+ AAAA? servfail.dnslab.nl. (36)
15:26:38.704409 IP 10.0.2.1.53 > 10.0.3.2.56600: 7000 ServFail 0/0/0 (36)
15:26:38.704779 IP 10.0.3.2.46832 > 10.0.2.1.53: 7000+ AAAA? servfail.dnslab.nl. (36)
15:26:38.712139 IP 10.0.3.2.34859 > 10.0.2.1.53: 751+ AAAA? servfail.dnslab.nl. (36)
15:26:38.722147 IP 10.0.3.2.60413 > 10.0.2.1.53: 751+ AAAA? servfail.dnslab.nl. (36)
15:26:38.732281 IP 10.0.2.1.53 > 10.0.3.2.60413: 751                          ServFail 0/0/0 (36)
15:26:38.732819    IP 10.0.3.2.53267 > 10.0.2.1.53: 62476+ A? servfail.dnslab.nl. (36)
15:26:38.741631 IP 10.0.2.1.53 > 10.0.3.2.53267: 62476 ServFail 0/0/0 (36)
15:26:38.742221 IP 10.0.3.2.55543 > 10.0.2.1.53: 62476+ A? servfail.dnslab.nl. (36)
15:26:38.750843 IP 10.0.3.2.55146 > 10.0.2.1.53: 40336+ A? servfail.dnslab.nl. (36)
15:26:38.758084 IP 10.0.3.2.55095 > 10.0.2.1.53: 40336+ A? servfail.dnslab.nl. (36)
15:26:38.768255 IP 10.0.2.1.53 > 10.0.3.2.55095: 40336 ServFail 0/0/0 (36)
15:26:38.769784 IP 10.0.3.2.33077 > 10.0.2.1.53: 38673+ AAAA? servfail.dnslab.nl. (36)
15:26:38.776971 IP 10.0.3.2.52085 > 10.0.2.1.53: 38673+ AAAA? servfail.dnslab.nl. (36)
15:26:38.787583 IP 10.0.3.2.60192 > 10.0.2.1.53: 55536+ AAAA? servfail.dnslab.nl. (36)
15:26:38.797985 IP 10.0.3.2.46728 > 10.0.2.1.53: 55536+ AAAA? servfail.dnslab.nl. (36)
15:26:38.803552 IP 10.0.2.1.53 > 10.0.3.2.46728: 55536 ServFail 0/0/0 (36)
15:26:38.803796 IP 10.0.3.2.60114 > 10.0.2.1.53: 40195+ A? servfail.dnslab.nl. (36)
15:26:38.810014 IP 10.0.2.1.53 > 10.0.3.2.60114: 40195 ServFail 0/0/0 (36)
15:26:38.810456 IP 10.0.3.2.35270 > 10.0.2.1.53: 40195+ A? servfail.dnslab.nl. (36)
15:26:38.823206 IP 10.0.2.1.53 > 10.0.3.2.35270: 40195 ServFail 0/0/0 (36)
15:26:38.823551 IP 10.0.3.2.57144 > 10.0.2.1.53: 50408+ A? servfail.dnslab.nl. (36)
15:26:38.829961 IP 10.0.3.2.35860 > 10.0.2.1.53: 50408+ A? servfail.dnslab.nl. (36)
15:26:38.836833 IP 10.0.2.1.53 > 10.0.3.2.35860: 50408 ServFail 0/0/0 (36)
```

and IPv4?

OS sends servfail to FireFox; Firefox makes OS retry

Browser & OS DNS query amplification

Response type	Firefox	Linux	Total
Valid	x 1	x1	x1
NXdomain / Partial	x2	x2	x4
ServFail / No response / Refused	x2	х4	х8
Truncated	x1	1+TCP	1+TCP

Response type	Safari	Mac OSX	Total
Valid	x 1	x1	x1
NXdomain / Partial	x 1	x2	x2
ServFail / No response / Refused	x1	x4	x4
Truncated	x1	1+TCP	1+TCP

> DNS query count in case of:

- > single authoritative NS; in case of primary and secondary => 2x
- > only IPv4; in case of IPv4 and IPv6 => 2x

Browser & OS DNS query amplification

Response type	IE	Windows XP	Total
Valid / NXdomain	x1	x1	x 1
Partial / ServFail / Refused	x 1	x1	x 1
No response	x 1	x5	x5
Truncated	x1	1+TCP	1+TCP

Response type	Chrome	Windows XP	Total
Valid / NXdomain	x 1	x 1	x1
Partial / ServFail / Refused	x 1	x 1	x1
No response	x 1	x5	х5
Truncated	x1	1+TCP	1+TCP

In fact, same behaviour for IE, Chrome, Firefox, Safari on Windows XP or Windows 7

Other sources of aggressive DNS clients (not investigated)

- Greedy synchronisation apps: bonjour, facebook apps, ...
 - may generate continuous stream of DNS requests
- > Browser pre-fetching
 - Firefox by default queries "anticipated next URLs" for a page
 - Chrome pre-fetches stored, successfully retrieved URLs, when started
- Ubuntu Linux: by default no DNS caching

Impact of the caching resolver

- Some damping of aggressive client behaviour by (BIND9) resolver
 - In case of no-response the resolver retries (7 retries, with exponential timer back-off), while holding back client side retries
 - Valid, NXdomain and truncated responses are cached
 - TCP session for truncated responses is handled by resolver

- > But also some amplification / modification by the resolver
 - Resolver 'double checks' ServFail responses
 - Unvalidatable response is returned as ServFail to client by non-DNSSEC enabled resolver
 - Also: partial, recursion refused and timeout are fed back as ServFail

Causes of aggressive DNS client behavior?

- > GNU Library C ('glibc') DNS service
 - > static code analysis:
 - > overall glibc no ordinary characteristics found
 - dynamic code analysis of DNS part:
 - 'responsible' code part is pinpointed
 - Code part is complex ⇔ improvement not found yet

Ok, before we drill down to the cause ... what's the impact?

13 11-3-2011

Impact model ("perfect behavior")

Impact on average DNS traffic volume

- Predicted query load reduction as result of modifying aggressive Linux/Mac behavior is small
 - penetration of Linux / Mac OSX relatively low
 - behavior occurs in case of 'exceptions' (ServFail, NXdomain, ...)

Impact outlook

- scenario: 10% DNSSEC validation error for SLD

DNSSEC configuration errors at a domain will attract more traffic, due to observed behavior

Impact outlook

- scenario: NXdomain caching disabled at resolver

Some amplification of bogus traffic to the Root

18 11-3-2011

Summary

- Linux and Mac clients display aggressive DNS behavior, in case of non-valid responses
 - Resolvers partly damp aggressive behavior, but also amplify it
- Impact of client behavior on average DNS traffic is relatively low
 - because fraction of Mac / Linux traffic is relatively low and
 - behavior occurs in particular for minority of DNS responses
- Although, for some particular cases the behavior amplifies traffic volume and rate

Next steps

- Share experiences with other experts
- Contribute to improving DNS function in the glibc(?)
 - > alternative for pinpointed code part causing the amplification
- > Further quantitative scenario impact analysis
 - further verification with ISP (SURFnet), SIDN data
 - compare to greedy apps behavior
- Is mobile internet different from other ISP traffic?
 - > ABI Research: "in 2015 62% of mobile device will be Linux-based" ...